Publication date: Available online 30 January 2019Source: Speech CommunicationAuthor(s): Dimitri Palaz, Mathew Magimai-Doss, Ronan CollobertAbstractIn hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial step. This is typically achieved by first extracting acoustic features from the speech signal based on prior knowledge such as, speech perception or/and speech production knowledge, and, then training a classifier such as artificial neural networks (ANN), Gaussian mixture model that estimates the emission probabilities of the HMM states. This paper investigates an end-to-end acoustic modeling ap...
from #Head and Neck by Sfakianakis via simeraentaxei on Inoreader http://bit.ly/2t236s4
Πέμπτη 31 Ιανουαρίου 2019
End-to-End Acoustic Modeling using Convolutional Neural Networks for HMM-based Automatic Speech Recognition
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.