Παρασκευή 23 Νοεμβρίου 2018

MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life

Publication date: Available online 22 November 2018

Source: NeuroImage

Author(s): Yong Chen, Meng-Hsiang Chen, Kristine R. Baluyot, Taylor M. Potts, Jordan Jimenez, Weili Lin, for the UNC/UMN Baby Connectome Project Consortium

Abstract

Quantitative assessments of normative brain development using MRI are of critical importance to gain insights into healthy neurodevelopment. However, quantitative MR imaging poses significant technical challenges and requires prohibitively long acquisition times, making it impractical for pediatric imaging. This is particularly relevant for healthy subjects, where imaging under sedation is not clinically indicated. MR Fingerprinting (MRF), a novel MR imaging framework, provides rapid, efficient, and simultaneous quantification of multiple tissue properties. In this study, a 2D MR Fingerprinting method was developed that achieves a spatial resolution of 1 × 1 × 3 mm3 with rapid and simultaneous quantification of T1, T2 and myelin water fraction (MWF). Phantom experiments demonstrated that accurate measurements of T1 and T2 relaxation times were achieved over a wide range of T1 and T2 values. MRF images were acquired cross-sectionally from 28 typically developing children, 0 to five years old, who were enrolled in the UNC/UMN Baby Connectome Project. Differences associated with age of R1 (=1/T1), R2 (=1/T2) and MWF were obtained from several predefined white matter regions. Both R1 and R2 exhibit a marked increase until ∼20 months of age, followed by a slower increase for all WM regions. In contrast, the MWF remains at a negligible level until ∼6 months of age for all predefined ROIs and gradually increases afterwards. Depending on the brain region, rapid increases are observed between 6 and 12 months to 6–18 months, followed by a slower pace of increase in MWF. Neither relaxivities nor MWF were significantly different between the left and right hemispheres. However, regional differences in age-related R1 and MWF measures were observed across different white matter regions. In conclusion, our results demonstrate that the MRF technique holds great potential for multi-parametric assessments of normative brain development in early childhood.



from #Head and Neck by Sfakianakis via simeraentaxei on Inoreader https://ift.tt/2DUuNdQ

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.