Παρασκευή 21 Σεπτεμβρίου 2018

Effects of D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles on the absorption, pharmacokinetics, and pharmacodynamics of salinomycin sodium

Although salinomycin sodium (SS) has shown in-vitro potential to inhibit cancer stem cell growth and development, its low water solubility makes it a poor candidate as an oral chemotherapeutic agent. To improve the bioavailability of SS, SS was encapsulated here using D-α-tocopherol polyethylene glycol succinate (TPGS)-emulsified poly(lactic-co-glycolic acid) (PLGA) nanoparticles and compared with its parent SS in terms of absorption, pharmacokinetics, and efficacy in suppressing nasopharyngeal carcinomas stem cells. The pharmacokinetics of SS and salinomycin sodium-loaded D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles (SLN) prepared by nanoprecipitation were analyzed in-vivo by timed-interval blood sampling and oral administration of SS and SLN to rats. Sensitive liquid chromatography-mass spectrometry (LC-MS) was developed to quantify plasma drug concentrations. SS and SLN transport in Caco-2 cells was also investigated. The therapeutic efficacy of SS and SLN against cancer stem cells was determined by orally administering the drugs to mice bearing CNE1 and CNE2 nasopharyngeal carcinoma xenografts and then evaluating CD133+ cell proportions and tumorsphere formation. The in-vivo trial with rats showed that the Cmax, AUC(0−t), and Tmax for orally administered SLN were all significantly higher than those for SS (P

from #Head and Neck by Sfakianakis via simeraentaxei on Inoreader https://ift.tt/2pp9yaW

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.