Publication date: Available online 19 November 2018Source: Speech CommunicationAuthor(s): Weitao Yuan, Boxin He, Shengbei Wang, Jianming Wang, Masashi UnokiAbstractDeep Recurrent Neural Network (DRNN) based monaural singing voice separation (MSVS) methods have recently obtained impressive separation results. Most of DRNN based methods directly take the magnitude spectra of the mixture signal as the input feature, which has high dimensionality and contains redundant information. The DRNN based models, however, cannot extract the effective low-dimensional and de-redundant representations from the magnitude spectra. In this paper, we propose an Enhanced Feature Network (EFN) to extract effective representations of the magnitude spectra, i.e., enhanced-feature, for MSVS. The generation of enha...
from #Head and Neck by Sfakianakis via simeraentaxei on Inoreader https://ift.tt/2Qb7Gl1
Τετάρτη 21 Νοεμβρίου 2018
Enhanced Feature Network for Monaural Singing Voice Separation
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.